NOMS Prénoms des élèves du groupe :

•

•

Travail de groupe nº 1

1 heure

	Exercice 1	Exercice 2	Exercice 3	BONUS	Tenue du groupe
Total	5	5	8	2	2

Exercice 1

Donner l'écriture algébrique des nombres complexes suivants :

1.
$$(2+3i)+(1-6i)$$

$$2. i^{-23}$$

3.
$$\frac{1+4i}{1+i\sqrt{2}}$$

$$4. \ \overline{\left(\frac{3-i}{5-7i}\right)}$$

Exercice 2

Résoudre dans $\mathbb C$ les équations suivantes :

1.
$$z^2 + 6z + 13 = 0$$

2.
$$\overline{z} - 3iz - 3 + 6i = 0$$
, \overline{z} étant le conjugué de z .

Exercice 3

Dans le plan muni d'un repère orthonormé, considérons le point $\Omega(1;0)$ et une famille de points $M_n(x_n;y_n)$ tels que, pour tout entier naturel n:

$$\begin{cases} x_{n+1} = -\frac{1}{2}y_n + 1\\ y_{n+1} = \frac{1}{2}x_n - \frac{1}{2} \end{cases}$$

- 1. Pour tout entier naturel n, notons z_n le nombre complexe ayant pour forme algébrique $x_n + iy_n$. Montrer que : $\forall n \in \mathbb{N}, \ z_{n+1} = \frac{1}{2}iz_n + 1 - \frac{1}{2}i$.
- 2. Pour tout entier naturel n, on pose $Z_n = z_n 1$. Montrer que : $\forall n \in \mathbb{N}, \ Z_{n+1} = \frac{1}{2}iZ_n$
- 3. En déduire, par un raisonnement par récurrence, que : $\forall n \in \mathbb{N}, \ Z_n = Z_0 \frac{1}{2^n} i^n$
- 4. On note d_n la distance de Ω à M_n . Justifier que : $\forall n \in \mathbb{N}, \ d_n^2 = Z_n \overline{Z_n}$
- 5. Exprimer, pour tout entier naturel n, d_n^2 en fonction de n et d_0 .
- 6. Si $M_0(5;4)$, déduire de la question précédente les coordonnées de M_{20} et la distance ΩM_{20}

BONUS

t désigne un nombre réel tel que $0 < t < \frac{\pi}{2}$.

Résoudre dans $\mathbb C$ l'équation suivante d'inconnue z :

$$z^{2} - 2(1 + \cos(2t))z + 2(1 + \cos(2t)) = 0$$